
Softening the Learning Curve of Software Development
Tools

João Fernandes
Instituto Superior Técnico

joao.n.fernandes@ist.utl.pt

Prof. Dr. Mário Rui
Gomes

Instituto Superior Técnico
mario.gomes@ist.utl.pt

Prof. Dr. Rui Prada
Instituto Superior Técnico
rui.prada@ist.utl.pt

Eng. Lúcio Ferrão
OutSystems

lucio.ferrao@outsystems.com

ABSTRACT
In the software industry, albeit wide spread techniques to
make the development cycle more agile, it is not easy for a
company to implement, maintain and deliver tools that sup-
port the learning stages of their users. As such, the learn-
ing processes and tools tend to receive fewer budget on the
product backlog. With this in consideration, a framework
for computer assisted learning was devised. This framework
is intended to increase the subject matter retention rate,
minimize the learners’ frustration levels, while keeping the
development and maintenance costs low.

The learning curve presented by an Integrated Development
Environment is discussed. The embedded tutorial system
within the OutSystems IDE presents low retention rates,
which makes users perform poorly when a transfer test is
presented. It is discussed how this embedded tutorial sys-
tem was extended with the developed framework. The chal-
lenge lies in combining the simplicity of interactive tutorial
systems, with the tailoring offered by Intelligent Tutoring
Systems.

Categories and Subject Descriptors
K.3.1 [Computer Uses in Education]: Computer-assisted
instruction (CAI)

Keywords
Learning, Embedded Tutorials, Improving Knowledge Re-
tention

1. INTRODUCTION
Image editing software, 3D modelling tools and Integrated
Development Environments (IDE’s), are examples of tools
devised to assist in solving complex problems. These tools
often deploy cutting edge technology, and are used by ex-
perts in their fields. The problem is the time and effort
needed for a novice user to master these tools, and became
productive. The learning curve for this products tends to be
steep, meaning that will take months of practice and frus-
tration, in order for a user to evolve in expertise.

This document presents as a case study the learning curve of
the OutSystems IDE. This platform supports full life-cycle
development of enterprise Web applications, and presents a

steep learning curve to novice users. This allows illustrat-
ing the typical learning tools, and their adequacy according
to the expertise of the user. Even though a set of tools
are deployed, novice users still take much time to evolve,
since these tools present low retention rates. In order to
address the problem of steep learning curves, this document
presents a framework that intends to: increase the learn-
ers’ retention rate, meaning that learners should be able
to perform better given a transfer test, not slowing the per-
formance of advanced users, and not to significantly increase
the maintenance costs.

2. THE LEARNING CURVE OF AN IDE
This section describes the learning curve of the OutSystems
IDE. So it becomes relevant to understand the several levels
of expertise, in order to detail the challenges faced by novice
users.

Figure 1: Dreyfus Model Of Skill Acquisition

One can classify the several learning stages, using the Drey-
fus model of skill acquisition. This model is detailed on [4,
6]. According to this model, what distinguishes the several
expertise levels is the increasingly capability of the expert
to execute a task at a subconscious level. It makes him able
to act more smoothly and able to perform several tasks at
the same time.

The Novice needs to have a decision tree to choose what to
do in order to perform a task. As they do not have expertise,
they might not know which rules apply to a particular sit-
uation. The Advanced beginner starts to exploring new
ways to do a task, but probably will face difficulties acting
on their own, since they give the same level of importance
and attention to all the attributes of a task. A Compe-



tent user is able to understand how the performed actions
fit on the long-term plan, since they are starting to build the
correct mental models. The Proficient user is able to ob-
serve deviations from the normal patterns and understands
which attributes of a task deserve more attention. Finally,
the Expert has developed gut feelings and can understand
the difference between irrelevant details and crucial ones.

In order to better illustrate the problem posed by software
training, will be described the learning tools devised by Out-
Systems, to assist users in the learning process. As part of
the development team, one had the opportunity to attend
several hours of usability sessions, on which participants
were exposed to tutorials and then performed transfer tests.
This provided insight of the frequent problems when inter-
acting with the platform, and contributed to understanding
users’expectations and mental models.

Figure 2: OutSystems Learning Path

Figure 2 shows that, in order to assist users, there are in-
teractive tutorials, which are embedded on the IDE, the
academy, an e-learning system, help reference files, and
a community, on which users trade their knowledge.

The interactive tutorials were developed to assist novice
users, but was found that these delivered low retention rates.
After being exposed to a tutorial, participants performed
poorly on transfer tests.

Figure 3: Tutorial Embedded on the IDE

A tutorial is comprised of window embedded on the IDE,
which is depicted in figure 3, and an arrow, that points to
the elements on the interface, that the user must interact
with. A tutorial contains several steps and each step con-
tains several tasks to perform. After a user starts a tutorial,
he will need to perform several tasks, interacting with several
interface elements, so that he can proceed in the tutorial. A

tutorial will typically teach how to build or extend an ap-
plication. Since there was a constant guidance, users would
follow the arrow, not generating mental models. They were
able to successfully finish the tutorial, but performed poorly
when presented with a similar problem.

The embedded tutorials are adequate to assist novice users
in their learning process, nonetheless, users still perform
poorly given a transfer test. Since improvements in the as-
sistance can be made, it is relevant to see what other tools
and techniques are deployed, and their adequacy to novice
users.

3. RELATED WORK: LEARNING TOOLS
This section surveys approaches to soften the learning curve,
and increase software training retention levels. Since this
document focus on computer assisted learning, only tools
and technology that fall in this category will be discussed.

3.1 Non-Interactive Media
Books, instructionals and other non-interactive media can
provide help when learning a new subject or evolving previ-
ous knowledge. An example is almost any book from the IT
shelf in a library or a help reference file that ships with any
software product.

Some of the main features of this approach to software train-
ing are: Searchable, since they allow searching for content.
One example is the help reference from TortoiseSVN 1, a
subversion client. Linked with the product, presenting
some degree of coupling with the product. An example can
be pressing the “F1” key makes a context aware page to
open. This is found on Microsoft Office Excel2. Writing a
function and pressing “F1” will provide help on that partic-
ular function. And detailed, meaning that they are highly
accurate and extensive, providing information almost about
every feature. One example is Microsoft’s web page for de-
velopment reference3.

One can divide non-interactive media in two distinct cate-
gories: continuous and discrete. The first is developed to
incrementally support the learner, making a soft transition
between the topics discussed and allowing the learner to get
a sense of where a particular element fits in the overall pro-
cess. An example can be the documents to learn Blender(a
3D modelling tool), that can be downloaded 4. The latter is
only for reference and is intended to explain in depth a fea-
ture in a self-contained way, but does not provide high level
context to the learner. An example is the help reference files
shipped with any product.

3.2 Video Tutorials
Video tutorials are a mean devised to provide context to
the learner. This brings the learner closer to a one-on-one
learning experience. If a learner wants to learn the complex
interface of 3D Studio Max (another 3D modelling software),
he can watch video tutorials provided in the product web

1http://tortoisesvn.net/
2http://office.microsoft.com/
3http://msdn.microsoft.com/en-us/library/
4http://gryllus.net/Blender/3D.html



site5. With higher bandwidth this learning method has been
spreading and is probably one of the most used within novice
users, because it is direct since the video provides context
and almost no previous knowledge is required. This helps
learners to accomplish specific tasks, which is rewarding.

There are two approaches while learning using these tools:
step by step, where the learner stops the video every step
and tries to mimic it, on the platform. One can also observe
and try, where the learner watches the whole video and at
the end tries to accomplish the same task, or apply that
knowledge to another instance of the problem.

These two approaches do not necessarily harm the learning
experience. Literature has shown that if neither of them
overburdens the working memory, the learner is able to cor-
rectly apply the new knowledge afterwards [7]. The main
problem with these tools is that they do not imply gen-
erating mental models. The learner can be passive in the
learning process, achieving a task through imitation thus
not internally processing it in order to generate new knowl-
edge. This is crucial for the learning process.

3.3 Discussion Forums
From the beginning of the Internet and more recently with
the boom of Web 2.0, groups of people have been uniting
to share knowledge. This is the emergence of communities
dedicated to helping each other, fostering new knowledge,
and sharing within a community of learners. Some examples
are forums where users exchange knowledge about the Java
programming language6, and communities built to perform
questioning and answering (Q&A) about software develop-
ment7.

These tools proved fit to address ad-hoc problems. They
are able to answer questions that were not previously iden-
tified by the product developers. Also, the content can be
updated by the users themselves, which will provide richer
content and at the same time, ease the maintenance cost
for the product developers. On the downside, it becomes
difficult and costly to maintain the redundant content and
they tend to be avoided by the novice user. These often
feel that these communities are used by experts and will be
reprimanded in case their question is seen as trivial, hence
neither participating actively nor posting their questions.

3.4 “Gamification”
“Gamification” is an approach that tries to apply game me-
chanics to non-game applications in order to teach behaviours
to the users. For a clarification of this term please refer to
[3]. Some of the mechanics introduced in these systems are:
achievements, levels, points, rewards and so on. Usually this
approach presents the learning materials in a slower pace.
This way, it is able to deliver the knowledge and practice
that is needed to master a system, without frustrating the
learner. These tools are able to immerse the learner, thus
making him spend more time in contact with the learning
system. Trough game mechanics, repetition of tasks is stim-
ulated. While typically the learner does not like to repeat

5http://download.autodesk.com/us/3dsmax/skillmoviesv2011
6http://www.javaranch.com/
7http://stackoverflow.com/

a task, “gamification” focus on developing approaches that
stimulate repetitive tasks. With the introduction of game
mechanics, repetitive tasks become challenges and are able
to increase the interest of the learner. Another positive fac-
tor is that these tools often deploy a scoring system, so the
learner will be competing not only with other learners, but
with himself. This is able to provide short term goals and in-
crease the learner motivation to evolve in the learning curve.
On the downside is the fact that the learning content will be
expensive to develop since it must be closely tied with the
game mechanics.

Industry implementations of these tools are still difficult to
find. While there are companies that develop experiences
or products around this concept, is difficult to find an im-
plementation of a “gamification” system that supports the
learning curve of a complex product such as an IDE, 3D
modelling tool or image editing software.

Ribbon Hero
Ribbon Hero is a plug-in for Microsoft Office suite that helps
the user evolution through “gamification”. Its main goal is
to teach a set of skills that the learner can use in the real
world environment (in this particular case within the Mi-
crosoft Office suite). All the learning processes are devel-
oped around the concept of earning points, while trying to
keep the learner in a flow state. This state is described by
Csikszentmihaly on [2].

One of the central points in Ribbon Hero is the fact that
the learner can monitor the progress at all times through a
pointing system. This provides a feedback loop that incen-
tives the learner to be active in the learning process. This
provides a sense of accomplishment every time the learner
sees the progress bar filling as a task is completed. Each
challenge has a set of clues that are intended to assist the
learner, in case he is not able to advance in the task. A hint
will direct the user to one of the elements that he needs to
interact with in order to advance. After the completion of
a task the user is encouraged to perform the same task but
with a higher challenge.

This system is event-based and there is no strict sequence
that needs to be followed in order to complete a task com-
posed of several steps. Doing so does not necessarily intro-
duces incorrect mental models, since most sets of basic tasks
in Microsoft Word can be used interchangeably. This means
that:
{ changing a text to bold, changing font to arial } ⇔ {
changing font to arial, changing a text to bold}

3.5 Abstraction Layer
Another approach to software training is the introduction of
an abstraction layer that can be used by novice users. In
this approach, there are at least two ways to solve the same
problem. One path is developed to be used by novice users
and other for experts. What is important for this research
is that these systems provide clear feedback to the novice
users on how to perform the same action using the tools or
mechanisms that an expert would use. Succinctly, successful
abstraction layers are those who stop being used as the user
evolves in expertise.



These tools teach using a “learn by example” paradigm.
In these systems, novices are provided with feedback that
shows how they can be more productive and evolve. On the
downside, these tools are highly coupled with the product,
thus being in the critical path of the product development.
Also almost no content is used, that can be consulted by the
learner. If the learner wants to know more about a feature,
he will have to use the help reference files.

AutoCAD
AutoCAD is a software application for both 2D and 3D de-
sign. While the novice searches for cues on the environment
in order to solve problems, the expert is able to use short-
cuts and combinations of commands that allow him to be
more efficient. To support a wider spectrum of the Dreyfus
Model, and assisting the novice user evolution, this software
displays all the commands in a command line, even when
the user interacts with the UI. To draw a line, a novice user
might: select the line tool, click on the (0,0) point on canvas
and click again on point (100,100) on canvas. Instead, the
expert user will use the command line to achieve the same
result, using: LINE 0,0 100,100 on a command line.

Even though the number of interactions with the system is
the same, the execution of the command through the com-
mand line will take less time to be accomplished because it
is more difficult and time consuming to find the point (x,y)
with the mouse. It becomes important to support the user’s
evolution so that he can become increasingly effective and
efficient in the use of these commands. The way that Auto-
CAD accomplishes this, is by showing in the command line
all the equivalent commands, while the user executes them
through the graphical interface. So the tools palette is just
an abstraction layer that tends to be less used as the user
evolves.

3.6 Interactive Tutorials
Another approach to soften the learning curve for novice
users are interactive tutorials. This way a user can be guided
while performing a task. These tutorial systems can be em-
bedded on the product itself, providing a guided environ-
ment for the learner to evolve. As they are integrated with
the product, it decreases the gap between learning environ-
ment and real one. On the downside, these systems are not
adequate for more advanced users, since it will not be able
to explain in detail the topics covered. Since these tools
are highly coupled with the product, their development and
maintenance impacts the development cycle of the product.
And since most of these tutorials are scripted, this means
that they can constrain the actions made by the learner.

Try Ruby
Try Ruby8 is a web site that provides an interactive Ruby9

tutorial. In this site the user can find a console, where all
the features and built-in methods of Ruby are available. In
addition, there are a few special commands that allow the
user to interact with the tutorial, for example starting or
jumping to the next step. This is a step by step tutorial, and
as such, the user must only write one expression in order to
make the tutorial advance. The first few steps are intended

8http://tryruby.org/
9http://ruby-lang.org/about

to teach some syntactic elements of the language. To teach
this, the tutorial is very flexible and as long as the user
inserts the required method, the tutorial will move forward.
One example of this feature is presented on the first step of
the tutorial. It instructs the user to try inserting “2+6” in
the console. As the important lesson is that the user learns
how to use the addition operation, the tutorial will move
forward as long as the user inputs an addition expression
<int> + <int>.

For every tutorial step, the user is presented with an ex-
planatory text and a new expression to be inserted. The
command or method that is relevant to the step is high-
lighted. This way, the learner can scan the text for these
keywords. Also highlighted, are the commands that the
learner must insert to advance in the tutorial.

This tutorial provides guided steps, while the learner is in-
side a fully functional Ruby console. This means that even
if the user is in a tutorial, all the behaviour and state of the
environment is saved and modified as if in a regular Ruby
environment. Even when inside the tutorial, the user can
explore and develop software with no restrictions.

3.7 Intelligent Tutoring Systems
The Intelligent Tutorial Systems (ITS) community addresses
some of the problems that this document does, providing
adaptive learning experiences. Examples in the industry are
hard to find, since most of these systems are used within the
academic community.

Figure 4: Intelligent Tutoring System Architecture

This is an Artificial Intelligence (AI) based approach that
aims at adapting the content, and learning process to the
learner. This is accomplished by encoding detailed knowl-
edge derived from experts at a particular domain. Intelligent
Tutorial Systems are typically composed of three different
modules [10]: Expert module, where the domain knowl-
edge is coded and can be inferred upon. It can be a sim-
ple input-output system (known as black-box), or can be a
system that encodes knowledge which can be inferred upon
(known as glass-box). Student module, which allows to
develop a model of the students’ knowledge. Finally the Tu-
tor module, which will select how to act to deliver knowl-
edge or knowledge building opportunities to the learner. It



can present new exercises, provide corrective feedback or
other means that it finds fit to help the learner.

One example that is interesting to analyse is the Lumière
Project. While this system is not a tutoring system, it tries
to assess the user difficulties and provide assistance. What
makes this example valuable is the fact that is was integrated
on a product. This system also comprises a student module
that performs user classification, and uses Bayesian belief
networks to implement functionalities similar to the expert
module described above.

Lumière Project
Lumière Project [5] was an approach that intended to as-
sess the user goals and difficulties using Bayesian Belief
Networks. The most known contribution of this work was
Microsoft Office Assistant10 (also known as Clippy), which
implemented several components presented on the Lumière
Project.

This system used instrumentation in order to detect user
needs. Some of the heuristics indicative of this were: con-
tinuous search search for an element in the User Interface
introspection, where a sudden stop of interaction with the
system happens. And producing undesired effects and
undoing a set of commands.

From these observations, the authors built a neural network
that, based on the interaction with the UI, predicted the
probability of the user wanting a certain kind of help. To
accomplish this, the authors found helpful to develop a query
language that abstracted low level interactions with the UI,
turning them into significant high level sets of actions. Some
of these were: counting the number of times an action had
occurred in a given period, testing if an action had occurred,
and testing the time the user spent dwelling. Another fea-
ture presented in this project was the ability to interpret
user queries. These were also used as input to the neu-
ral network. A revision on the probability distribution was
performed having this data in consideration, in order to re-
evaluate the user modelling.

On the downside, Intelligent Tutoring Systems are very dif-
ficult to develop and maintain, and depending on the imple-
mentation, new content creation can only be performed by
experts in that field, which means that they will be a scarce
resource.

3.8 Discussion
After surveying some of the tools and technologies that ad-
dress the problem posed by software training, figure 5 sum-
marizes their adequacy according to the Dreyfus Model.

Interactive Tutorials, Intelligent Tutoring Systems and e-
Learning are able to address the entire spectrum of exper-
tise, because the content delivered in these systems can be
adjusted to each of the several stages of the learning process.

When learning with Non-interactive, learners perform a
high amount of context switching. Video tutorials pro-
vide context to the learner and reduce the context switching.

10US Patent 6262730, Filled 1998-20-11, Issued 2001-17-7

Figure 5: Comparison Between Learning Tools and Their
Dreyfus Model Range

Discussion forums are excellent in dealing with issues or
questions not previously identified by the development team,
but are not the most adequate for the novice user; “Gam-
ification” gives time and extra motivation for the learner
to improve, but its development is highly coupled with the
product development cycle; Abstraction Layers provide
little content, but they teach by example a novice to master
the platform, increasing their productivity. They are also
highly coupled with the product development, since they
can be seen as a feature of the product. Interactive tuto-
rials provide a good balance of procedural and declarative
knowledge, and provide a continuous transition between the
discussed topics. But they are difficult to change. Finally,
Intelligent Tutoring Systems are highly adaptive to the
learner, but as they need experts in the domain, their devel-
opment and maintenance costs are high.

Trying to apply an Intelligent Tutoring System approach,
would not solve the problem given the high maintenance
costs presented by those systems. But the level of assis-
tance provided is adequate to novice users. One approach is
extending an Interactive Tutorial in order to provide some
degree of adaptation to the learner.

4. INCREASING RETENTION
In order to provide several guidance levels, the embedded tu-
torials of Outsystems were extended with an adaptive guid-
ance system. And given that users were not reading most
of the content, there is a period without guidance (Reading
State), but also Inquisitive Tasks that will stimulate users
to read and address the problem without assistance, making
users build mental models.

Similarly to the Intelligent Tutoring System, the developed
architecture is composed of two modules: a user mod-
elling, that monitors user events and classifies the user ac-
cordingly. The second, adaptation, which will define the



level of assistance that the user will receive.

To achieve this, this framework implements: a baseline
which are a set of metrics that allow specify the performance
of an average user in a given tutorial. A user history, that
saves information about how many tutorials has the user
performed and their success levels. An Initializer, that will
allow to adapt the general baseline to the particular experi-
ence of a user. And finally a Recorder, which will record
every interaction of the user with the system. This allows to
identify if the user needs assistance. This information can
also be stored for later use if necessary. Figure 6 shows how
this process is performed.

Figure 6: Generation of an Adapted Baseline from the User
History

In order to summarize the data taken from all the tasks, was
opted to only use the time component. The expected time
to complete the task was evaluated, and the time it took for
the participant to solve that task.

f(n) =
n∑

i=0

(Time To Solven−Expected Time to Solven)

Although simplistic, it provides a good metric about the
user expertise, as discussed in subsection 3.7. Also, this was
done having in consideration the limitations of the platform
on which this framework was implemented.

The tutorial system in Service Studio validates discrete states.
This means that if the first task asks the user to rename the
application to“SalesAssistant”, then the logic performed will
be: every time that the application model is changed, check
if the application name is set to “SalesAssistant”. If this
happens, load the next task and its validation stack. This
validation by states is very useful, because one can abstract
the way a user arrived to a given state. If in this example,
the user could change the application name in five differ-
ent UI elements, it would not matter where the user did so,
because once the name was as expected, the tutorial would
validate it and would fire an event signalling that this task
in the tutorial was completed. On the other hand, it is not
possible to understand if a performed action is relevant to
solving a given problem.

SuccessfulTutorial =

{
True if f(n)>0
False otherwise

This framework will only consider tutorials who have been
successfully finished. Although is also saved information
about tutorials finished unsuccessfully, that will not affect
the Tutorial Initializer. As an example, if a user performs
two tutorials, finishing the first with success and the latter
unsuccessfully, the “Tutorial Initializer” will consider that
only one tutorial was successfully finished, and will adjust
the baselines to that fact.

4.1 Increasing Guidance System
Given that users where provided with too much guidance
in the embedded tutorials, making them unable to build
solid mental models, an increasing guidance system was im-
plemented. This system is devised to provide the minimal
guidance possible, while not increasing frustration levels. A
state machine was implemented, in order to model and as-
sist the user. This architecture comprises a state machine
with fuzzy transitions, as described by Schwab [13]. There
are three states, and each state is responsible to produce
changes either on the UI or the tutorial system itself, pro-
viding an increasing assistance level.

The three states are: Reading State, which is intended
so that the learner is focused on reading the presented text
and starts to address the problem without any help; the
Cue state, which is responsible to introducing a small clue
on how to solve the problem or what element in the UI the
learner needs to interact with. And finally, the Guided
State, which should introduce changes that are noticeable
by the peripheral vision of the learner. Even if he is focused
on another part of the screen, his attention should be di-
rected to the UI elements that need interaction to solve the
problem.

Although there are only three states, the Guided State can
fire two different events, which will increase the level of as-
sistance. As the level of assistance remains the same during
the Guided state, was found that there was no need to insert
them as new states in the state machine. These events are:
Help, which will show a help message associated with the
current task; and the Lost event, which after a great number
of interactions with elements not relevant to the task and a
great amount of time is spent trying solving the task, will
ask if the user wants to search for help outside the tutorial
system.

The tutorial system embedded in Service Studio was ex-
tended with the state machine depicted on figure 7.

In the embedded tutorial comprised on Service Studio, the
three levels of assistance were implemented as depicted on
figure 8. When in Reading State, the learner will not be
guided. When in Cue State a dimmed arrow is displayed,
that will not be noticeable by the users’ peripheral vision.
Finally when in Guided State, a moving arrow will point to
the relevant UI element, and being noticeable by the periph-
eral vision.

Having in consideration the fact that users were scanning for
words such as: click, double-click and drag and following
the arrow, which makes a tutorial easy to finish but with low
retention rates, the Reading State is crucial to provide users
with the opportunity to develop mental models. Since one of



Figure 7: Implementation of the User Evaluation States

(a) Reading State (b) Cue State (c) Guided State

Figure 8: Increasing Help System

the goals of this framework is not increasing the maintenance
costs of the tutorial system, only at run-time the amount of
text should be calculated, and the time given to the Reading
state should be set.

Given that on Service Studio an event is raised when the
user is entering a new task, one could easily implement a lazy
evaluation system to compute the amount of time that the
user should be given in the Reading State. When the tutorial
validates the user action, if there are no more validations
to perform, a new task will be loaded and should raise an
event. When this happens, the reaction to that event should
be to get the amount of text associated with the new task,
calculate the necessary time to read, set the Reading State
with that value and change the state machine to it. From
now on, the state machine will fire another event when the
time for reading has ended and one should react accordingly.

4.2 Framework For Building Tutorials
In order to captivate users’ attention, and making them able
to build mental models, the provided guidance must be ad-
equate, as also as the content should be presented in an
engaging way.

One came to understand that there was support for two task
types in the embedded tutorials of Service Studio: Action
and Informative tasks. Instead a tutorial should comprise
four different task types: Actions tasks, where the learner
must interact with the system, introducing changes. These
tasks stimulate procedural learning; Informative Tasks in-
tended for the learner to absorb some information. These
tasks deliver declarative learning. Inquisitive Tasks,where

the learner will be encouraged to stop and review the sub-
ject matter; and Exploration tasks, intended for the user
to interact with the system, navigating through it, while
not introducing any changes in the application that is being
developed.

This framework proposes the following combination of tasks,
as a guideline to constructing a tutorial: Start the tutorial
with an informative task. It should explain what the goal of
the tutorial is, and give an overview of the process. The tu-
torial author should guarantee that even if the learner does
not read this step, the leaner will be able to perform the
tutorial. Deliver a set of action tasks. The correct number
is dependent on the complexity of the task, but from our ex-
perience the learner should experience around five of these
tasks. This is also supported by [8]. One should break a
given action into several tasks (using the 7±2 rule). By do-
ing so, the user will be able to keep these items in the work-
ing memory, making it easier to understand the relationships
between them and forming schemata. Then present an ex-
ploration task. If the learner spent too much time focused
on solving problems, this is a good way to provide declara-
tive knowledge and at the same time reduce the stress levels.
Near the end of the tutorial, present a review question, that
asks about the core idea presented in the tutorial. And the
last step in the tutorial should congratulate the learner and
encourage him to perform other tutorials. this will form the
bridge to other topics.

From our experience, we believe that delivering 80% of pro-
cedural knowledge and 20% of declarative one, is a good
balance. This allows keeping the learner motivated and en-
gaged in the learning process. According to Csikszentmihaly
[2], to keep the user engaged, one needs to introduce periods
of stress followed by relaxation. Continuous stress will lead
to frustration and continuous relaxation will lead to bore-
dom. On our framework, the stress periods will be provided
by the Action and Inquisitive Tasks, and the relaxation pe-
riods by the Informative and Exploration tasks.

Figure 9: Tutorial Re-authored Using the Proposed Frame-
work

In figure 9 is depicted a part of the “Build an App in 5 min-
utes” tutorial, which was re-authored in order to test the de-
veloped framework. For clarity purposes is only presented a
part of the tutorial. In this tutorial is incorporated: an In-
troduction (1) that presents a summary of what the user



will learn in this tutorial. Several Action Tasks (2), being
that each of them teaches the user how to perform certain
tasks to achieve the goal of the tutorial. Two Informative
Tasks (3) which provide declarative knowledge. One Ex-
ploration Task (4), where the user can explore what he
built during the action tasks. During these tasks the user
modelling is disabled, and the user can take the necessary
time to explore. And two Inquisitive Tasks (5) where the
user will experience inquisitive tasks after an informative or
exploration task.

Several factors led to choosing to re-author this tutorial: this
was the tutorial subjected to more usability tests thus, us-
ability related problems were minimized. It taught how to
develop a full application while most of the other tutorials
taught how to extend an application. And It is a fairly com-
plex project for novice users to try without any assistance.
The possibility of developing a new tutorial was also consid-
ered, but was intended to test the system as closest to the
production environment as possible.

4.3 Framework For Inquisitive Tasks
In order to increase the challenge, and help users build men-
tal models, Inquisitive Tasks were introduced in the tutorial
system. This decision is supported by Jakob Nielsen in [9].
This study points to the fact that surveys and questions can
be a good way to address the low retention levels on the
web. Even though the study focuses on the web, the author
discuss one of the problems we are addressing: users scanned
through the text without absorbing the content. But it is not
enough to introduce Inquisitive Tasks, it is also important
to know how to correctly curate their content. This doc-
ument presents a set of guidelines, based on a psychology
background provided by Mayer et al in [1] and by Schank in
[11].

Do not present options such as “all of the above”/“none of
the above”. These kinds of options do not help a novice
learner building mental models since they are too vague.
Questions should be written in an informal tone. This will
ease the pressure on the user, not introducing additional
stress to the tutorial. Also, every hypothesis should have an
associated explanation. It should state why that hypothesis
is correct or incorrect and what is the correct way to address
the problem. The answers to the Inquisitive Tasks are as
important as the questions themselves. Finally, use forgiving
language to explain the wrong alternatives. Wrong answers
should be replied in a way that alleviates the pressure on
the learner.

Providing Inquisitive Tasks and opportunities to stimulate
declarative knowledge does not necessarily imply helping
users build the correct schemata. So one must ensure that
the questions and answers correctly address the user faulty
mental models, in order to build a consistent learning path.

Figure 10 depicts how Inquisitive Tasks were implemented
on the embedded tutorial system of Service Studio. As can
be seen, the learner can only advance in the tutorial, if the
correct answer is selected.

5. EVALUATION METHODOLOGY
Participants

(a) Wrong Answer (b) Correct Answer

Figure 10: Questions Inside The Tutorial

After concluding the implementation was devised a testing
scenario so that one could compare the developed solution
against the original tutoring system. The sample was com-
posed of N = 19 participants. 6 participants were female,
and the ages of the participants were comprised between 22
and 25, with an average of 23.21 years old. All of the partic-
ipants had at least a BSc degree in computer science. While
one can consider these participants at least at a competent
level in C++, Java and other technologies, none of them had
previous contact with the Agile Platform. Thus no partici-
pant had ever seen the IDE or the tutorial system, making
them novices in the learning curve of the Agile Platform.

Materials and Procedure
Participants were randomly assigned to one of two Service
Studio versions, where one had the original tutorial system
while other contained the implemented solution described in
this document. A basic A/B test was performed. The ses-
sions were performed on a laptop with Internet connection,
and both the Agile Platform of Outsystems and the Mozilla
Firefox browser were installed. Also all the interaction with
the platform was recorded using a screen recording software.

Metrics
After being exposed to the tutorial, each participant was
asked to pinpoint at most two emotions towards the tuto-
rial system using the Geneva Emotion Wheel [12]. Then,
participants were wasked to solve a transfer test, which pre-
sented a different instance of the same problem taught in
the tutorial. The time that took each participant to solve
the transfer test was evaluated in order to observe partici-
pants performance. The transfer test was divided into six
checkpoints. For each participant was measured the time to
complete each checkpoint both while performing the tutorial
and while performing the transfer test.

The checkpoints were: Start a new Application which
can be achieved in three distinct UI paths. This task will
mark the beginning of the test. Create and populate
records where participants had to create entities to save
data about employees. Also he had to populate the records
by importing data contained in an spreadsheet. Create
a list screen, on which participants needed to create a



web page to show the imported data. Publish application
where participants would deploy and test the application.
Create an edit screen, on which participants had to create
a web page that allowed to edit the information of a given
employee. And finally Publish the final application.

5.1 Observed Results
All participants from both groups were able to successfully
finish the tutorial. The minimum time for the control group
was 11:41 minutes, while the maximum was 22:59 minutes.
The average was 16:33 with a standard deviation of 3:22
minutes. For the test group, the minimum was 12:15 min-
utes, while the maximum was 26:26 minutes. The average
was 18:21 with a deviation of 4:10 minutes. As can be seen
from figure 11, participants who experienced the extended
tutorial, on average took more time to complete it, than
users from the control group. It is interesting to see that in
the checkpoint “Create an Edit Screen”, the averages of the
two groups almost converge.

Figure 11: Average Tutorial Execution, in Minutes

Was observed that only a small minority of participants felt
negative emotions towards the tutorial system. That data
is summarized in figure 12.

Figure 12: Emotional Results

It is important to notice that while using the Geneva Emo-
tional Wheel, each participant can pinpoint from none to two
emotions. In the “other” category, a user described “confu-
sion” and another “sense of accomplishment”. In a follow-up
session, participants were asked to explain the emotions that
had been pinpointed. Both users that expressed negative
feelings, related those emotions with one particular step in
the tutorial.

Two participants from the control group were not able to
finish the transfer test. The minimum time for participants

who finished the transfer test was 5:38 minutes, while the
maximum was 14:50 minutes. An average of 9:59 minutes
with a standard deviation was 3:30 minutes.

Three participants from the test group were not able to finish
the transfer test. The minimum time it took for a partici-
pant to complete the transfer test was 5:34 minutes, while
the maximum was 9:21 minutes, with an average of 7:06
minutes and standard deviation of 1:40 minutes.

Figure 13: Average Transfer Test Execution in Minutes

On figure 13 can be seen that for the two first checkpoints
the time that took participants to complete was almost the
same. From the third checkpoint onwards, there is a no-
ticeable difference in the time taken. As can be observed,
the framework allowed for learners to decrease their problem
solving times, when compared with the original tutorials.

5.2 Discussion
Participants in the control group were able to finish earlier
the tutorial. This was predicted since the re-authored tuto-
rial contained Inquisitive Tasks, which would incentive users
to stop and meditate on the lessons learnt. Also the devel-
oped framework provided time for reading and during these
periods there would be no clues on which elements needed in-
teraction to advance in the tutorial. Since the control group
was given early assistance on the elements that regarded at-
tention, these users were able to perform the actions earlier
than those on the test group. On average the control group
was able to end 1 minute and 48 seconds earlier.

It was validated that the developed framework did not in-
crease the frustration levels of the participants. Of the ten
participants, none demonstrated negative emotions towards
the tutorial system. On the other hand, two participants
on the control group, described negative emotions. The first
“anger”and the second“confusion”. The dominating positive
emotions were “involvement”, “wonder” and “astonishment”,
being that the control group tended to choose“involvement”,
whereas the test group spread evenly across “involvement”
and “wonderment”.

In the transfer test, on average the test group performed bet-
ter, but two on ten participants could not remember how to
advance in order to complete the tutorial. Although slower
on average, the control group only contained one of nine
participants that was not able to remember how to com-
plete the given task. This is relevant because although the



developed framework is able to on average reduce the time
of a transfer test, the number of unsuccessful participants is
0.0(7) higher.

It is also relevant to discuss the case of the two participants
who were not able to finish the transfer test due to platform
restrictions. Both users were not able to finish the task,
because when creating the “Employee” entity, they deleted
the primary key. Since the Agile Platform performs instant
error checking, instead of only presenting them at compile
time, these users saw an error indicating that an entity could
not be only composed by an attribute with the property
“AutoNumber” set to true. These two users noticed that the
application had an error, and tried to address it by deleting
the primary key. When the primary key was deleted, this
error disappeared, reassuring them that the application was
correct. The problem was that later, the platform let these
users create a list screen but did not allow the creation of
an edit screen. This was because, in order to build an edit
screen, one needs to uniquely identify the employee that will
be edited.

This happened both in the developed framework and the
control group, and the tutorial could not predict this be-
haviour. Since this is an embedded tutorial system, the error
presented to the user is triggered on the platform side and
not on the tutorial environment. This shows how usability
problems on the platform can impact the learning process.

6. CONCLUSIONS
The observed results were not as expected. While on av-
erage the users that experienced the developed framework
were able to present a quicker solution on the transfer test,
three out of ten were not able to finish it. One was due to
performing an action that later would make it impossible to
proceed, due to platform restrictions. Another two were not
able to successfully solve the transfer test. On the control
group two out of nine participants were not able to finish
the transfer test. The first user also deleted a primary key,
leading to the impossibility to later create a screen to edit
data. The second could not remember how to create a list
screen and move forward in the transfer test.

As described, the developed framework did not negatively
impacted the frustration levels presented by the users, be-
ing that all participants of the test group pinpointed positive
emotions after completing the tutorial. On the other hand,
two participants from the control group demonstrated neg-
ative emotions towards the tutorial system.

Future Work
Because of resources and time constrains, only a relatively
small number of participants participated in the study (N =
19). Further tests should be made with more participants,
in order to validate these findings. For the same reason
there was no possibility to evaluate how the learning process
progresses over a vast period of time. Currently there is no
data about evolution of the learners over a large timespan.
This could provide interesting insights not only about the
evolution of novice users, but also from those who are higher
in the Dreyfus Model.

Although this document addressed the problem by imple-

menting a framework for an assisting tutorial system, the
fact is that the problem must be addressed in a wider con-
text. The learning process cannot be evaluated without con-
sidering the platform itself. It is not enough to develop tools
to assist the learner. These tools should be integrated in the
product, and efforts should be made to make the product ad-
equate to novice users, making processes and tools simpler
to understand and use by those users.

7. REFERENCES
[1] R. C. Clark and R. E. Mayer. e-Learning and the

Science of Instruction: Proven Guidelines for
Consumers and Designers of Multimedia Learning.
Jossey-Bass Inc.,U.S., 2nd revised edition edition,
2007.

[2] M. Csikszentmihaly. Flow: The Psychology of Optimal
Experience. HarperCollins Publishers, 2008.

[3] S. Deterding, M. Sicart, L. Nacke, K. O’Hara, and
D. Dixon. Gamification. using game-design elements
in non-gaming contexts. In Proceedings of the 2011
annual conference extended abstracts on Human
factors in computing systems, CHI EA ’11, pages
2425–2428, New York, NY, USA, 2011. ACM.

[4] S. E. Dreyfus and H. L. Dreyfus. A Five-Stage Model
of the Mental Activities involved in Directed Skill
Acquisition. Technical report, 1980.

[5] E. Horvitz, J. Breese, D. Heckerman, D. Hovel, and
K. Rommelse. The lumiere project: Bayesian user
modeling for inferring the goals and needs of software
users. In In Proceedings of the Fourteenth Conference
on Uncertainty in Artificial Intelligence, pages
256–265. Morgan Kaufmann, 1998.

[6] H. Hunt. Pragmatic Thinking and Learning: Refactor
Your Wetware. 2008.

[7] R. E. Mayer, R. Moreno, M. Boire, and S. Vagge.
Maximizing Constructivist Learning From Multimedia
Communications by Minimizing Cognitive Load.
Journal of Educational Psychology, 91(4):638–643,
December 1999.

[8] G. A. Miller. The Magical Number Seven, Plus or
Minus Two: Some Limits on Our Capacity for
Processing Information. Psychological Review,
63:81–97, 1956.

[9] J. Nielsen. Test-taking enhances learning. http:
//www.useit.com/alertbox/learning-recall.html.
Accessed July 25, 2011.

[10] M. C. Polson and J. J. Richardson, editors.
Foundations of intelligent tutoring systems. L.
Erlbaum Associates Inc., Hillsdale, NJ, USA, 1988.

[11] R. C. Schank. Designing World Class e-learning. 2002.

[12] K. R. Scherer. What are emotions? And how can they
be measured? Social Science Information,
4(44):693–727, 2005.

[13] B. Schwab. AI Game Engine Programming. Charles
River Media, 2008.

http://www.useit.com/alertbox/learning-recall.html
http://www.useit.com/alertbox/learning-recall.html

	Introduction
	The Learning Curve of an IDE
	Related Work: Learning Tools
	Non-Interactive Media
	Video Tutorials
	Discussion Forums
	``Gamification''
	Abstraction Layer
	Interactive Tutorials
	Intelligent Tutoring Systems
	Discussion

	Increasing Retention
	Increasing Guidance System
	Framework For Building Tutorials
	Framework For Inquisitive Tasks

	Evaluation Methodology
	Observed Results
	Discussion

	Conclusions
	References

